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We study a phase transition in a non-equilibrium model first introduced in
ref. 5, using the Yang–Lee description of equilibrium phase transitions in terms
of both canonical and grand canonical partition function zeros. The model
consists of two different classes of particles hopping in opposite directions on a
ring. On the complex plane of the diffusion rate we find two regions of analyti-
city for the canonical partition function of this model which can be identified by
two different phases. The exact expressions for both distribution of the canoni-
cal partition function zeros and their density are obtained in the thermodynamic
limit. The fact that the model undergoes a second-order phase transition at the
critical point is confirmed. We have also obtained the grand canonical partition
function zeros of our model numerically. The similarities between the phase
transition in this model and the Bose–Einstein condensation has also been
studied.

KEY WORDS: Matrix Product Ansatz; Asymmetric Exclusion Process; Yang–
Lee theory.

1. INTRODUCTION

One of the most important activities in the field of equilibrium statistical
physics is the study of the phase transitions; nevertheless, there is a general
framework for the statistical description of the equilibrium systems and
also different approaches for studying their equilibrium phase transitions.
One of these theories was proposed by Yang and Lee in 1952. (3) The
Yang–Lee theory of equilibrium phase transitions is based on the zeros of
the partition function. It is known that the zeros of the grand canonical
partition function of finite systems Z(z) (in which z is fugacity) are



generally complex or negative if real. In the thermodynamic limit roots
might move down (or up) and touch the positive real axis. When this
happens, a phase transition occurs because the system can have different
behaviors for z < z0 and z > z0, where z0 is the value of the root on the real
axis. For example the pressure P=kBT limV Q .((1/V) log Z) will be non-
analytic and the density r=(“/“ log z)(P/kBT) will be discontinuous at
the transition point which predict a first-order phase transition. Similarly,
one can investigate the zeros of the canonical partition function as a func-
tion of complex-temperature and find the same transition points. (4) By cal-
culating the line of zeros and also their density in the thermodynamic limit
one can find the transition point and also the order of transition exactly.

Recently much attention has been focused on one-dimensional out of
equilibrium systems because of their interesting properties such as first-
order phase transitions and spontaneous symmetry breaking. (1, 2) However,
in contrast to the equilibrium systems many powerful concepts are missing
in this context. For example, the applicability of the Yang–Lee theory to
the non-equilibrium systems such as one-dimensional driven diffusive
models is a quite non-trivial question and yet without answer. People have
tried to apply the Yang–Lee theory to describe phase transitions in these
models. (6, 7) It seems that one can define similar quantities such as a grand
canonical partition function and then apply this theory to the out of equi-
librium systems without any problem. In this paper we will apply the
Yang–Lee theory to an exactly solvable one-dimensional non-equilibrium
model and investigate its phase transitions. This model has already been
solved in our previous work and exact results are available. (5) Here we are
going to compare our previous results with those obtained from application
of the Yang–Lee theory; however, we should mention some of the differ-
ences between our work in this paper and what other people have done so
far. In ref. 6 the author studies a particle-conserving driven diffusive model
consists of two different classes of particles with finite densities (8) 2 and

2 This model is known as AHR model in related literature.

applies the Yang–Lee theory to it. He aimed to locate a phase transition
induced by varying the density of particles. By introducing a grand canon-
ical partition function as a function of a fugacity-like quantity a first-order
phase transition is located by studying the numerically obtained zeros of
this function. In another paper (7) the authors investigate the phase transi-
tions in the asymmetric simple exclusion process (ASEP) with open boun-
daries (10, 11) by studying the zeros of the partition function of the model. In
their approach the boundary rates were generalized to the complex plane.
They obtained the distribution of zeros near the transition point and also
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their density near the real axis using the similarities with electrostatic
theory. They could also calculate the line of zeros analytically.

The solvability of our model allows us calculate its canonical partition
function exactly. This was done in our previous paper (5) and will be
reviewed in the second section. Apart from numerical estimates for the
zeros of the canonical partition function as a function of reaction rates, we
have calculated the line of zeros and also their density (which determines
the order of the phase transition) analytically using the equilibrium statis-
tical physics toolbox. Having the exact analytical results we can discuss the
possibility of phase transition and also obtain its order. Next we will define
a grand canonical partition function and study its zeros in the complex-
fugacity plane. The properties of this function reveal the similarities
between the phase transition in our model and that of a Bose gas. In the
last section we will summarize our results and generalize our approach to
other non-equilibrium models.

2. THE MODEL

In ref. 5 we introduced a one-dimensional exclusion model consists of
two different classes of particles (we call them positive and negative par-
ticles hereafter) which occupy the sites of a chain of length L with periodic
boundary condition. Each site of the chain is either empty or occupied by a
negative or by a positive particle. The positive (negative) particles hop to
their immediate right (left) sites with unit rate provided that the target sites
are empty. Adjacent particles with different charge type might exchange
their positions with asymmetric rates 1 and q. Specifically, the interaction
rules are

+ 0 0 0 + with the rate 1

0 − 0 − 0 with the rate 1

+ − 0 − + with the rate q

− + 0 + − with the rate 1.

(1)

Assuming that there are M positive particles and only one negative particle
on the chain3 we showed that the steady state weights P(C) of the model

3 In this case our model is a special case of AHR model (8) in which the number of the positive
and negative particles on the ring are equal.

can be obtained exactly using a so-called Matrix Product formalism. (11)

One can define the sum of these steady state weights as a quantity which
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plays the role analogous to the canonical partition function in equilibrium
statistical physics

Z=C
C

P(C).

It turns out that Z has a closed form in terms of the transition rate q, the
number of the positive particles M and the length of the chain L

ZL, M(q)= C
M

i=0

(q − 3)(2
q)

i+1
q − 2

CM − i
L − i − 2 (2)

in which C j
i =

i !
j !(i − j)! is the binomial coefficient. In the thermodynamic limit

L, M 0 . with r=
M
L

being fixed (3)

using the steepest decent method it can be shown that

for q < 2r ZL, M(q) 4 1q − 3
q − 2

2 (2
q)

L − 1

(2
q − 1)L − M − 1

for q > 2r ZL, M(q) 4 (1 − r) 11+r
(q − 2r) − (q − 2)2

(q − 2)(q − 2r)
2 CM

L .

(4)

The existence of two different phases is apparent. In the same reference we
have shown that the density profile of the positive particles has an expo-
nential behavior for q < 2r with a correlation length t=|ln qc

q |−1 which
diverges as q approaches its critical value qc=2r, while it is an error func-
tion for q > 2r. This proves the existence of a second-order phase transi-
tion from a power-law phase to a jammed phase. Using the Matrix Product
formalism one can also calculate the speed of the different species of par-
ticles on the ring in the thermodynamic limit. Both speeds are linearly
increasing functions of q for q [ 2r. However, for q \ 2r the speed of the
positive particles is a constant equal to 1 − r while the speed of the negative
particle is a complicated increasing function of q. In the following section
we will apply the Yang–Lee theory of equilibrium phase transitions to our
model. As we will see, it will not only recover all the above mentioned
results but also shed more light on the unknown aspects of our problem.

3. THE PARTITION FUNCTION ZEROS

Let us study the phase transition of the our model using the Yang–Lee
theory. We consider the zeros of the canonical partition function of the
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Fig. 1. The numerical estimates for the roots of ZL, M(q) in the complex-q plane for different
values of density r=0.6, 0.8, 0.9 and L=150. It is seen that the roots accumulate to the
positive real q axis at 1.2, 1.6, and 1.8 respectively.

model ZL, M(q) given by (2) in the complex-q plane at fixed L and M. In
Fig. 1 we have plotted the numerical estimates of these zeros for a chain of
length L=150 and three different values of r. As can be seen the zeros
accumulate slowly to the real q axis at a critical value qc=2r. As we will
see later this accumulation takes place at an angle p

4 which is the reminis-
cent of a second-order phase transition. (4) In what follows we will try to
find the line of the canonical partition function zeros and also their density
near the positive real-q axis using the equilibrium statistical physics tools.
We will see that the equilibrium-type calculations give the same results
obtained from the numerical estimates.

It has been shown that the line of zeros can be obtained from (4)

Re g1=Re g2. (5)

In equilibrium statistical physics g is the extensive part of free energy and is
generally a function of the temperature (here q) and the density of particles r.
The indexes 1 and 2 show the values of the function g in the right and the
left hand side of the critical point. Here we define this function as

g(q, r)= lim
L, M Q .

1
L

ln ZL, M(q) (6)

where lim · · · is in fact the thermodynamic limit given by (3). Using the
asymptotic behavior of ZL, M(q) given by (4) we can calculate g(q, r) in
each phase. After further calculations we obtain

for q < 2r g(q, r)=ln
2

qr(2 − q)1 − r

for q > 2r g(q, r)=ln
1

rr(1 − r)1 − r
.

(7)

Application of the Yang–Lee Theory 273



-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

y

x

Fig. 2. Plot of the Eq. (8) (solid lines) for three values of density of the positive particles
r=0.6 (inner), r=0.8 (center), and r=0.9 (outer). They cross the positive x axis at x=2r.
The dotted lines belong to the numerical estimates of the canonical partition function zeros
for the same values of densities and are taken from the Fig. 1.

By substituting (7) in (5) we find the following equation for the line of
zeros in the complex-q plane

112 − x
1 − r

22

+1 y
1 − r

2221 − r 11x
r
22

+1y
r
222r

=4. (8)

in which x — Re(q) and y — Im(q). In Fig. 2 we have plotted both (8) and
the numerical estimates of zeros given in the Fig. 1 for three values of r.

As can be seen the curves lie on the numerical estimates of the canon-
ical partition function zeros. The small difference belongs to the fact that
the numerical estimates have not been calculated in real thermodynamic
limit. The curves also cross the positive x axis at xc=2r which is the tran-
sition point as we had mentioned above. In the equilibrium Yang–Lee
theory it is well known that the density of zeros on the real positive axis is
zero at a second-order phase transition. In order to obtain the density of
zeros m in this region (on the positive real x axis and near the critical point)
we use the following equation first introduced in ref. 4

2pm(s, r)=
“

“s
Im(g1 − g2) (9)
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in which s is the arc length of the line of the zeros which is zero at the cri-
tical point and increases along with the line of zeros in the positive y direc-
tion. The values of g1 and g2 are given by (7). In order to calculate m(s, r)
first we find an equation for the line of zeros which is valid for small y’s in
the vicinity of the critical point xc=2r.

Using (8) it can be shown that this is actually a line

y=2r − x for |x − 2r| ° 1, 0 < y ° 1. (10)

The Eq. (10) confirms that the accumulation of zeros in the vicinity of the
real-q axis takes place at angle p

4. Using (7), (9), and (10) we find for r ] 1

2pm(y, r)=−
“y
“s

“

“y
Im 1 ln

2
(x+iy)r (2 − x − iy)1 − r

2 3
y

2r(1 − r)
. (11)

Therefore, as y approaches to zero the density of zeros becomes zero as we
expect for a second-order phase transition. Comparing the numerical data
given in Fig. 1 with the results obtained from the application of the equi-
librium statistical physics tools shows good agreement between the two
approaches; therefore, we it is reasonable to believe that the analytical
approach presented here gives the exact result.

It is also interesting to look for the zeros of the grand canonical parti-
tion function of our model. In this case we can investigate the similarities
between the phase transition in our model with that of a Bose gas. As
opposed to the equilibrium statistical physics, the definition of a grand
canonical ensemble for the steady state of a non-equilibrium system is not
unique. We adopt the following definition first used in ref. 12

ZL(q, z)= C
L − 1

M=0
zMZL, M(q) (12)

in which z is the fugacity of the positive particles and ZL, M(q) is given
by (2).

It is seen that the grand canonical partition function (12) is a poly-
nomial of degree L − 1 in z so, in the complex-z plane it has L − 1 zeros zi

and can be written as

ZL(q, z)=D
L − 1

i=1
(z − zi).
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Using (2) one can easily calculate the grand canonical partition function
(12) explicitly

ZL(q, z)=1q − 3
q − 2

2512z
q
2L − 1

+
(1+z)L − 1

(q − 3)
+

(2z
q )L − 1 − (1+z)L − 1

(2z
q ) − (1+z)

6 . (13)

The fugacity of the positive particles in (12) has to be fixed by density of
them

r(z)=
z
L

“

“z
ln ZL(q, z). (14)

Let us examine the zeros of the grand canonical partition function given by
(13) in the complex-z plane. Since the grand canonical partition function is
a real polynomial with positive coefficients (they are sum over probabil-
ities) the zeros come in complex conjugate pairs and the real roots are
negative. In Fig. 3 we have plotted the numerical estimates of the zeros of
(13) in complex-z plane for three values of q. As long as q < 2 the roots lie
on a vertical elliptic. It also appears that the zeros approach the real z axis
at an angle p

2. It is a sign of a first-order phase transition. For q > 2 all of
the roots have negative real parts; therefore, we do not expect any phase
transition to take place. For q=2, we should take the limit of (2) since it is
undefined at this point. In the following we will investigate our model in
order to see its similarities with the Bose–Einstein condensation. Using (13)
one can calculate (14) in each phase in the thermodynamic limit explicitly.
It turns out that

r(z)=3
z

z+1 for z < q
2 − q

1 for z > q
2 − q .

(15)
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Fig. 3. Plot of the numerical estimates of the zeros of the grand canonical partition function
(12) for q=0.5, 1.0, and 4.0. The length of the chain is L=50.
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Fig. 4. Plot of the density of the positive particles (14) as a function of fugacity z for
L=50, 100, and 200 at q=0.3. In the thermodynamic limit there is a finite discontinuity in
the density of particles.

In Fig. 4 we have plotted (14) for different values of L. As can be seen the
L dependence of the density suggests that in the thermodynamic limit, r

increases with z and then at a specific point z0= q
2 − q it has a finite discon-

tinuity. At this point, z does not fix the density anymore and the system
undergoes a first-order phase transition.

The finite jump in the density is related to the finite density of roots of
(13), m(z), at the real z axis

m(z0)=
1 − r(z0)

2pz0
. (16)

The critical fugacity z0 can also be obtained by extrapolating the real part
of the nearest root4 to the real positive z axis for L Q .. In the Bose–

4 In fact there are two of them since the roots appear in complex conjugate pairs.

Einstein condensation the density of the particles has such a behavior
where the conservation of the number of particles is broken. (13) Another
interesting quantity is the pressure which can be defined analogously to
equilibrium physics

P(z)=
1
L

ln ZL(q, z). (17)

However, P is not the physical pressure of the particles in the current
context. The particles pressure in each phase in the thermodynamic limit
can be calculated using (13)

P(z)=3 ln(1+z) for z < q
2 − q

ln(2z
q ) for z > q

2 − q .
(18)
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Fig. 5. The pressure P as a function of r−1 for q=0.2 and L=15000.

Now by using (15) and (18) it can easily be verified that in the power-law
phase (r < q

2) the particles pressure P as a function of density has the form
P(r)=ln( 1

1 − r) while in the jammed phase (r > q
2), as can be seen from (15),

the density-fugacity relation (14) breaks down and results in r=1;5 how-

5 Physically, this is related to the existence of a shock in this phase.

ever, the particles pressure remains constant in this phase P(r)=ln( q
2 − q).

In Fig. 5 we have plotted (17) as a function of the inverse of density of
particles r−1 for L=15000 and q=0.2. The critical density in this case is
r=0.1. As can be seen for 1

r > 10 the pressure decreases as the density gets
smaller; however, for 1

r < 10 it is nearly constant. This isotherm (here q
instead of temperature T) is similar to the isotherm of the free Bose gas
when the Bose–Einstein condensation takes place. One can also look at the
compressibility o which is defined as

o=Lz2 (19)

in which

z=
`Or2P−OrP2

r
(20)

and the fluctuation of the density of the positive particles can be obtained
using

Or2P−OrP2=
z
L

“

“z
1 z

L
“

“z
ln ZL(q, z)2 . (21)

Figure (6) shows z as a function of the chain length L for r=0.6 and two
values of q above and bellow of the transition point. The transition point in
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Fig. 6. Plot of (20) as a function of L for r=0.6 and two values of q.

this case occurs at qc=1.2. It can be seen that z is a decreasing function of
L in the power-law phase (q > qc) while it is nearly constant in the jammed
phase (q < qc). Using (13) and (21) it can be verified that in the thermo-
dynamic limit z drops down as 1

`L
in the power-law phase while in the

jammed phase it remains constant which gives a divergent compressibility.

4. CONCLUDING REMARKS

In this paper we have used the Yang–Lee description of equilibrium
phase transitions in terms of the zeros of both canonical and grand canon-
ical partition function to study a non-equilibrium phase transition in a
driven diffusive system. By studying the canonical partition function zeros
a second-order phase transition was predicted. This is in quite close
agreement with our previous results in ref. 5. The line of zeros and also
their density on the real axis near the transition point were obtained
exactly. By introducing the grand canonical partition function of our
model (12) the similarities between the phase transition in our model and
the one seen in the equilibrium Bose gas were elegantly observed.

The approach that we used in this paper can also be applied to other
models. In a similar model consists of a group of first class particles
hopping behind a slow (or a second class) particle on a closed chain of
length L, with the following interaction rules

1 0 0 0 1 with the rate 1

2 0 0 0 2 with the rate a.
(22)

It is shown that by choosing the right reaction rates the probability distri-
bution for the stationary state can be mapped to the one obtained for an
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ideal Bose gas. (9) The thermodynamic limit of the canonical partition
function of this model is obtained in ref. 9

for a < 1 − r ZL, M(a) 4
(1 − a)1 − M

(a)L − M

for a > 1 − r ZL, M(a) 4
ar2

r+a − 1
CM

L

(23)

in which r=M
L is the density of the first class particles. Now using (5) and

(6) we find the line of zeros in complex-a plane

111 − x
r

22

+1y
r
222r 11 x

1 − r
22

+1 y
1 − r

2221 − r

=1 (24)

where x — Re(a) and y — Im(a). This function crosses the real positive a

axis at ac=1 − r at an angle p
4. It can be seen that the thermodynamic limit

of the canonical partition function of our model (4) is quite similar to (23).
Using (5) one can also obtain the line of zeros for the ASEP with open
boundaries exactly.

For this model with two parameters a and b as injection and extrac-
tion rates of particles, the line of zeros in the complex-a plane (and b being
fixed) is

(−x2+x+y2)2+(y − 2xy)2=J2 (25)

in which we have defined x — Re(a), y — Im(a) and the current of particles
is

J=3
1
4 if b \ 1

2

b(1 − b) if b [ 1
2 .

The investigation of (25) confirms the existence of two phase transitions in
the system. In Fig. 7 we have plotted the line of zeros (25) for two values
of b. It can be seen that (25) gives exactly the same results obtained in
ref. 7 from the numerical estimates of the canonical partition function
zeros. In ref. 7 the line of zeros is stated to be |a(1 − a)|=J. By putting
a=x+iy one finds (25) for the line of zeros.
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Fig. 7. Plot of the Eq. (25) for b=1
3 and b=1.

Apart from the above mentioned models one can show that our
approach can be applied to many other non-equilibrium systems like those
introduced in ref. 14. Work in this direction is in progress. (15)

ACKNOWLEDGMENTS

I would like to thank G. M. Schütz for reading the manuscript and
his comments and also the Max–Planck Institute für Physik Komplexer
Systeme where the preliminary calculations for this work were done.

REFERENCES

1. B. Schmittmann and R. K. P. Zia, in Phase Transitions and Critical Phenomena, Vol. 17,
C. Domb and J. Lebowitz, eds. (Academic Press, London, 1995).

2. G. M. Schütz, Integrable stochastic processes, in Phase Transitions and Critical Phenomena,
Vol. 19, C. Domb and J. Lebowitz, eds. (Academic Press, New York, 1999).

3. C. N. Yang and T. D. Lee, Phys. Rev. 87:404 (1952); Phys. Rev. 87:410 (1952).
4. S. Grossmann and W. Rosenhauer, Z. Phys. 218:437 (1969); S. Grossmann and

V. Lehmann, Z. Phys. 218:449 (1969).
5. F. H. Jafarpour, J. Phys. A: Math. Gen. 33:8673 (2000).
6. P. F. Arndt, Phys. Rev. Lett. 84:814 (2000).
7. R. A. Blythe and M. R. Evans, Phys. Rev. Lett. 89, 080601 (2002).
8. P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Stat. Phys. 97:1 (1999).
9. M. R. Evans, Europhys. Lett. 36:13 (1996).

10. G. M. Schütz and E. Domany, J. Stat. Phys. 72:277 (1993);
11. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys. A 26:1493 (1993).
12. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, J. Stat. Phys. 78:813 (1993).
13. R. K. Pathria, Statistical Physics (Oxford, Pergamon, 1972).
14. K. Mallick, J. Phys. A: Math. Gen. 29:5375 (1996); H.-W. Lee, V. Popkov, and D. Kim,

J. Phys. A: Math. Gen. 30:8497 (1997); G. M. Schütz, J. Stat. Phys. 71:471 (1993).
15. F. H. Jafarpour, Cond-mat/0301407 (to appear in J. Phys. A: Math. Gen.).

Application of the Yang–Lee Theory 281


	1. INTRODUCTION
	THE MODEL
	THE PARTITION FUNCTION ZEROS
	CONCLUDING REMARKS
	ACKNOWLEDGMENTS

